Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rowan, Stuart J (Ed.)ABSTRACT: We review in this Viewpoint recent progress on the development of a new class of sustainable electrocatalytic systems for water-splitting and molecular hydrogen generation using diiron disulfide ([2Fe-2S]) active site methacrylate metallopolymers. To date, noble metal catalysts (e.g, platinum) remain the best electrocatalysts for molecular hydrogen generation using water as the chemical feedstock and proton donor. However, there remains a need for the synthesis of efficient electrocatalytic systems using low cost, earth abundant materials for sustainable H2 generation. We focus on our recent work in this area using well-defined single site [2Fe-2S]-metallopolymer catalysts. Thus far, these systems have demonstrated rates of hydrogen production >25 times faster than [FeFe]-hydrogenase enzymes and match the current densities of platinum with only 0.2 V higher potential when operating in water at neutral pH with tris(hydroxymethyl)aminoethane (TRIS) buffer (Faradaic yields 100±3%). The molecular design and synthesis of [2Fe-2S]-metallopolymers are reviewed along with mechanistic studies unraveling the causality of efficient H2 production from this catalytic system. The overall current output and overpotential are improved by (a) the reversible electrostatic adsorption of the metallopolymer on the carbon electrode surface that enhances the proton and electron transfer rates and (b) the use of protic buffer electrolytes (PBEs) that enhance the availability of protons. The schemes summarized here to improve the performance of [2Fe-2S] catalysts by incorporation into metallopolymers may be used to enhance the performance of other molecular electrocatalysts at the electrode surface.more » « less
-
Rowan, Stuart J (Ed.)ABSTRACT: The diverse functionalization of the polymeric support phase of diiron disulfide[2Fe–2S] metallopolymer elec-trocatalysts offers a route to enhanced generation of molecular hydrogen production via water-splitting. Click chemistry has been shown to be a useful tool in post-polymerization functionalization for a wide range of polymeric materials under mild conditions which is a requirement for [2Fe-2S] metallopolymers due to the presence of iron carbonyl (Fe-CO) bonds in the active site. In this study, we developed a new synthetic methodology to functionalize [2Fe–2S] metallopolymers using atom transfer radical polymerization (ATRP) and post-polymerization functionalization using azide-alkyne “click” cycloaddition. Azide functional [2Fe–2S] metallopolymers were prepared by the ATRP of 3-azidopropyl methacrylate (AzPMA) with either methyl methacrylate (MMA), or 2-(dimethylamino)ethyl methacrylate (DMAEMA), followed by copper-catalyzed “click” cycloaddition with functional terminal alkynes. Both families of PMMA and PDMAEMA functional [2Fe–2S] metallo-co-polymers were found to be retain Fe-CO bonds from the catalyst active site after the click chemistry reactions, and more importantly, exhibited high electrocatalytic activity for electrochemical water-splitting under pH neutral aqueous conditions.Not Availablemore » « less
-
Abstract In this study, the first fabrication of phase‐shifted Bragg gratings utilizing chalcogenide hybrid inorganic/organic polymers (CHIPs) is presented based on poly(sulfur‐random‐(1,3‐isopropenylbenzene) to measure the thermo‐optic coefficient (TOC) of this new class of optical polymers. The unique properties ofCHIPs, such as high index contrast and low optical losses, are leveraged to fabricate Bragg gratings that enable precise determination of the TOC and glass transition temperature (Tg) of these polymers. The optical measurement introduces a novel technique to measure the TOC and Tgof optical polymers which can be difficult to determine using traditional methods such as differential scanning calorimetry (DSC) after fabrication into photonic device constructs. The findings demonstrate thatCHIPs exhibit low thermo‐optic (TO) effects, making them exceptionally well‐suited for the development of thermally stable photonic integrated circuits.more » « less
-
Abstract The development of a low‐cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high‐quality, bulk optical glass. The low‐cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57–1.59), low birefringence (Δn < 10−4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm−1at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1–30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano‐micropatterned arrays. Finally, large‐scale 3D printing vat photopolymerization of DSMR using high‐area rapid printing digital light processing additive manufacturing is demonstrated.more » « less
-
Abstract The development of an organic optical glass, termed, disulfide glass (DSG), is reported as a new polymer for commodity plastic optics and thin film photonic applications. This low‐cost thermoset polymer possesses excellent transparency across the visible and infrared spectrum comparable to the best optical plastic to date, poly(methyl methacrylate), while having superior refractive index (n≈ 1.6). DSG can be fabricated into defect‐free, thick optical glass by bulk addition polymerization of two commodity monomers (sulfur monochloride, 1,3,5‐triallyl isocyanurate) via a new polymerization, sulfenyl chloride inverse vulcanization. The robust mechanical properties and optical clarity of DSG enable fabrication of precision optics (lenses, prisms) via diamond turn machining to demonstrate the manufacturability of DSG for commodity plastic optics. Finally, the synthetic modularity of DSG is demonstrated to form solution processable forms for the fabrication of thin film polymer photonic devices, negative tone polymer photoresists, and micropatterned arrays.more » « less
-
The preparation of sulfur containing polymers from inexpensive, commodity sulfur base chemicals is an emerging field of polymer chemistry as a route to consume elemental sulfur generated from fossil fuel refining. Recently a new process, termed, sulfenyl chloride inverse vulcanization has been developed that exploits the high reactivity and miscibility of sulfur monochloride, (S2Cl2) with a broad range of allylic monomers to prepare soluble, high molar mass linear polymers, segmented block copolymers and crosslinked thermosets with greater synthetic precision than achieved using classical inverse vulcanization with elemental sulfur. However, the ring opening of episulfonium intermediates from this polymerization can proceed via Markovnikov, anti-Markovnikov, or alternative pathways resulting in complex regioisomeric microstructures, particularly when used with allylic ester monomers. Hence, to accelerate structural characterization of this new class of polyhalodisulfides prepared by the sulfenyl chloride inverse vulcanization process, we report on a detailed structural characterization to quantify the molar composition of regioisomeric units in these materials using NMR spectroscopy,focusing on sulfenyl chloride additions to allylic benzoate substrates. We report on a general methodologyusing one- and two-dimensional NMR spectroscopic techniques to enable direct integration of 2D NMRspectroscopic cross peaks to quantify the molar composition of regioisomeric units in 1,3-diallyl isophthalate(DAI) polymerized with S2Cl2, along with detailed studies on model compound reactions to detail the analytical methodology.more » « less
-
Abstract Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly‐enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring‐opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly‐ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly‐ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di‐functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.more » « less
An official website of the United States government
